Minggu, 18 Juli 2010

Hukum gerak Newton

Hukum gerak Newton adalah hukum sains yang ditemukan oleh Isaac Newton mengenai sifat gerak benda. Hukum-hukum ini merupakan dasar dari mekanika klasik.

Newton pertama kali mengumumkan hukum ini dalam Philosophiae Naturalis Principia Mathematica (1687) dan menggunakannya untuk membuktikan banyak hasil mengenai gerak objek. Dalam volume ke tiga karyanya, dia menunjukan bagaimana penggabungan Hukum gravitasi universal dan hukum gerak newton ini, dapat menjelaskan Hukum gerakan planet Kepler.

.Pentingnya hukum gerak Newton

Alam dan Hukum alam tersembunyi dalam malam;
Tuhan berkata, Biar Newton jadi! Dan semua menjadi terang.
— Alexander Pope

Hukum gerak Newton, bersama dengan hukum gravitasi universal dan teknik matematika kalkulus, memberikan untuk pertama kalinya sebuah kesatuan penjelasan kuantitatif untuk fenomena fisika yang luas seperti: gerak berputar benda, gerak benda dalam cairan; projektil; gerak dalam bidang miring; gerak pendulum; pasang-surut; orbit bulan dan planet. Hukum konservasi momentum, yang Newton kembangkan dari hukum kedua dan ketiganya, adalah hukum konservasi pertama yang ditemukan.

Hukum Newton dipastikan dalam eksperimen dan observasi selama 200 tahun.

.Hukum pertama Newton : Hukum Inersia

Hukum Newton ketiga, masing-masing pemain ski saling mendorong dengan gaya yang sama tetapi berkebalikan arah

Hukum ini juga disebut hukum inersia atau prinsip Galileo

''Jika resultan gaya pada suatu benda sama dengan nol, maka benda yang mula-mula diam akan terus diam. Sedangkan, benda yang mula-mula bergerak, akan terus bergerak dengan kecepatan tetap''

Hukum Newton I dapat diinterpretasikan sebagai berikut :

  • Sebuah benda, akan tetap berada dalam keadaan diam atau akan terus bergerak, kecuali jika dipaksa berubah dengan menerapkan gaya luar ke benda tersebut

Pernyataan tersebut dapat dinyatakan dengan \Sigma\,\!F = 0

Keterangan :

\Sigma\,\!F adalah resultan vektor dari gaya
  • Sebuah benda akan tetap diam, atau bergerak dalam garis lurus dengan kecepatan tetap, kecuali diberi gaya luar.

Pernyataan tersbut, dalam notasi kalkulus, dapat dinyatakan dengan \frac{d}{dt}\mathbf{v} =  \mathbf{0}

Keterangan :

\frac{d}{dt}\mathbf{v} adalah diferensial kecapatan terhadap waktu

Hukum Newton I menjelaskan kerangka acuan di mana hukum II dan hukum III Newton dapat dibuktikan benar. Kerangka acuan ini disebut kerangka acuan inersial atau kerangka acuan Perkembangan hukum I Newton

Perkembangan hukum ini dapat ditelusuri hingga Aristoteles. Aristoteles membagi gerak menjadi dua, yaitu gerak alami dan gerak paksa, dalam hal gerak alami, menurutnya setiap benda akan mencari keadaan alaminya (eg. benda berat jatuh kebawah, benda ringan terbang keatas) dan menyatakan bahwa gerak melingkar adalah gerak alami yang tidak disebabkan oleh gaya. Dalam hal gerak paksa, Aristoteles berpendapat bahwa gerak paksa disebabkan oleh gaya luar yang bekerja pada suatu benda dan jika pada suatu benda tidak bekerja gaya luar, maka benda tersebut akan kembali ke keadaan alaminya yaitu diam.

Setelah Aristoteles, Galileo melakukan percobaan sendiri mengenai gerak dengan menggunakan bola dan menyimpulkan bahwa bola yang bergerak akan diperlambat kelajuannya sampai berhenti oleh gaya gesek. Pengamatan dan kesimpulan Galileo kemudian dipelajari dan dikembangkan oleh Newton untuk menyusun hukum pertamanya.

Hukum ilmiah

Hukum sains biasanya adalah suatu pernyataan di dalam dunia ilmu pengetahuan yang biasanya berupa hipotesis yang sebelumnya telah didukung oleh percobaan-percobaan dan menyangkut teori-teori sebelumnya yang dapat mendukung teori dan hukum tersebut.

Dalam sejarahnya, hukum sains dapat diilhami berdasarkan suatu percobaan secara ilmiah, ada juga hukum tersebut dibuat atas dasar pemikiran yang kritis atau dengan sesuatu keadaan coba-coba bahkan atas sesuatu ketidak-sengajaan.

Daftar isi

[sembunyikan]

.Hukum Sains berdasarkan huruf alfabet

[sunting] Hukum Archimedes (+250 sebelum Masehi)

"Jika suatu benda dicelupkan ke dalam sesuatu zat cair, maka benda itu akan mendapat tekanan keatas yang sama besarnya dengan beratnya zat cair yang terdesak oleh benda tersebut".

.Hukum Avogadro (1811)

"Jika dua macam gas (atau lebih) sama volumenya, maka gas-gas tersebut sama banyak pula jumlah molekul-molekulnya masing-masing, asal temperatur dan tekanannya sama pula".

.Hukum Bernouilli (1738)

"Bagi zat-zat cair, yang tidak dapat dimampatkan dan yang mengalir secara stasioner, jumlah tenaga gerak, tenaga tempat dan tenaga tekanan adalah konstan".

.Hukum Boyle (1662)

"Jika suatu kuantitas dari sesuatu gas ideal (yakni kuantitas menurut beratnya) mempunyai temperatur yang konstan, maka juga hasil kali volume dan tekanannya merupakan bilangan konstan".

.Hukum Boyle-Gay Lussac (1802)

"Bagi suatu kuantitas dari suatu gas ideal (yakni kuantitas menurut beratnya) hasil kali dari volume dan tekanannya dibagi dengan temperatur mutlaknya adalah konstan".

.Hukum Coulomb (1785)

  • Gaya, yang dilakukan oleh dua kutub magnet yang satu pada yang lain, adalah sebanding-lurus dengan kuatnya mekanitisme kutub-kutub tersebut dan sebanding balik dengan kuadrat jarak antara kedua kutub tersebut.
  • Gaya, yang dilakukan oleh dua benda (yang masing-masing bermuatan listrik) yang satu pada yang lain, adalah sebanding-laras dengan kuatnya muatan listrik dari benda-benda tersebut dan sebanding-balik dengan kuadrat jarak antara kedua benda itu.

.Hukum Gay Lussac (1802)

"Jika suatu kuantitas dari sesuatu gas ideal (yakni kuantitas menurut beratnya) mempunyai tekanan yang konstan, maka juga hasil bagi volume dan temperaturnya merupakan bilangan konstan" "gas berkembang secara linear dengan tekanan tetap dan suhu yang bertambah"

.Hukum Dalton (1802)

"Tekanan dari suatu campuran yang terdiri atas beberapa macam gas (yang tidak bereaksi kimiawi yang satu dengan yang lain) adalah sama dengan jumlah dari tekanan-tekanan dari setiap gas tersebut, jelasnya tekanan dari setiap gas tersebut, jika ia masing-masing ada sendirian dalam ruang campuran tadi".

.Hukum Dulong dan Petit (1819)

"Kalori jenis dari zat-zat padat adalah kira-kira 6 (enam) kalori per grammolecule".

.Hukum-hukum (ayunan) Galilei (1596)

  • Tempo ayunan tidak bergantung dari besarnya amplitudo (jarak ayunan), asal amplitudo tersebut tidak terlalu besar.
  • Tempo ayunan tidak bergantung dari beratnya bandulan ayunan.
  • Tempo ayunan adalah sebanding laras dengan akar dari panjangnya bandulan ayunan.
  • Tempo ayunan adalah sebanding-balik dengan akar dari percepatan yang disebabkan oleh gaya berat.

. Hukum Kirchoff (1875)

  • Jika berbagai arus listrik bertepatan di suatu titik, maka jumlah aljabar dari kekuatan arus-arus tersebut adalah 0 (nol) di titik pertepatan tadi.
  • Dalam suatu edaran arus listrik yang tertutup berlaku persamaan berikut: "Jumlah aljabar dari hasilkali-hasilkali kekuatan arus dan tahanan disetiap bagian (dari edaran tersebut) adalah sama dengan jumlah aljabar dari gaya-gaya gerak listriknya".
  • Besar Arus listrik yang mengalir menuju titik percabangan sama dengan jumlah arus listrik yang keluar dari titik percabangan

.Hukum Lenz (1878)

"Jika suatu pengantar listrik digerakkan dalam suatu medan magnet, maka arus listrik yang diinduksikan berarah sedemikian rupa, sehingga gerak pengantar listrik yang mengakibatkan induksi tadi terhambat olehnya.

.Hukum Newton (1687)

"Dua benda saling menarik dengan suatu gaya yang sebanding-laras dengan massa-massa dari kedua benda tersebut dan sebanding-balik dengan kuadrat dari jarak antara kedua benda itu.

.Hukum Ohm (1825)

"Jika suatu arus listrik melalui suatu penghantar, maka kekuatan arus tersebut adalah sebanding-laras dengan tegangan listrik yang terdapat diantara kedua ujung penghantar tadi". Hukum Ohm menyatakan bahwa besar arus yang mengalir pada suatu konduktor pada suhu tetap sebanding dengan beda potensial antara kedua ujung-ujung konduktor I = V / R HUKUM OHM UNTUK RANGKAIAN TERTUTUP I = n E

     R + n rd

I = n

    R + rd/p

n = banyak elemen yang disusun seri E = ggl (volt) rd = hambatan dalam elemen R = hambatan luar p = banyaknya elemen yang disusun paralel

RANGKAIAN HAMBATAN DISUSUN SERI DAN PARALEL

SERI

R = R1 + R2 + R3 + ... V = V1 + V2 + V3 + ... I = I1 = I2 = I3 = ...


PARALEL

1 = 1 + 1 + 1 R R1 R2 R3

V = V1 = V2 = V3 = ... I = I1 + I2 + I3 + ...

ENERGI DAN DAYA LISTRIK

ENERGI LISTRIK (W) adalah energi yang dipakai (terserap) oleh hambatan R.

W = V I t = V²t/R = I²Rt

Joule = Watt.detik KWH = Kilo.Watt.jam

DAYA LISTRIK (P) adalah energi listrik yang terpakai setiap detik.

P = W/t = V I = V²/R = I²R

.Hukum Pascal (1658)

"Jika suatu zat cair dikenakan tekanan, maka tekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya".


rumusnya :

F1 = (F2xA1):A2 F2 = (F1xA2):A1 A1 = (F1xA2):F2 A2 = (F2xA1):F1

.Hukum Snellius (1621)

  • Jika suatu sinar cahaya melalui perbatasan dua jenis zat cair, maka garis semula dari sinar tersebut, garis sesudah sinar itu membias dan garis normal dititik-biasnya, ketiga-tiga garis tersebut terletak dalam satu bidang datar.
  • Perbandingan antara sinus-sinur dari sudut masuk dan sudut bias adalah konstan.

.Hukum Stefan - Boltzmann (1898)

"Jika suatu benda hitam memancarkan kalor, maka intensitas pemancaran kalor tersebut sebanding-laras dengan pangkat empat dari temperatur absolut".

[sunting] Hukum Wiedemann - Franz (1853)

"Bagi segala macam logam murni adalah perbandingan antara daya-penghantar-kalor spesifik dan daya penghantar-listrik spesifik suatu bilangan yang konstan, jika temperaturnya sama".

.Hukum Gauss Gauss

"Jumlah garis-garis gaya listrik yang menembus atau menambah suatu permukaan tertutup sebanding dengan jumlah muatan listrik yang dilingkupi oleh permukaan tertutup tersebut dan sebagaimnya"

.Hukum Maxwell(percobaan Maxwell) James Clerk Maxwell [1864]

"Oleh karena perubahan medan magnet dapat menimbulkan medan listrik,sebaliknya perubahan medan listrik dapat menimbulkan perubahan medan magnet"

Hukum Ohm

Langsung ke: navigasi, cari
V, I, dan R sebagai komponen parameter dalam Hukum Ohm.

Hukum Ohm adalah suatu pernyataan bahwa besar arus listrik yang mengalir melalui sebuah penghantar selalu berbanding lurus dengan beda potensial yang diterapkan kepadanya.[1][2] Sebuah benda penghantar dikatakan mematuhi hukum Ohm apabila nilai resistansinya tidak bergantung terhadap besar dan polaritas beda potensial yang dikenakan kepadanya.[1] Walaupun pernyataan ini tidak selalu berlaku untuk semua jenis penghantar, namun istilah "hukum" tetap digunakan dengan alasan sejarah.[1]

Secara matematis hukum Ohm diekspresikan dengan persamaan:[3][4]

V = I R\

dimana I adalah arus listrik yang mengalir pada suatu penghantar dalam satuan Ampere, V adalah tegangan listrik yang terdapat pada kedua ujung penghantar dalam satuan volt, dan R adalah nilai hambatan listrik (resistansi) yang terdapat pada suatu penghantar dalam satuan ohm.

Hukum ini dicetuskan oleh Georg Simon Ohm, seorang fisikawan dari Jerman pada tahun 1825 dan dipublikasikan pada sebuah paper yang berjudul The Galvanic Circuit Investigated Mathematically pada tahun 1827. [5]

[sunting] Lihat pula

[sunting] Referensi

  1. ^ a b c (en)Halliday, David; Resnick, Robert; Walker, Jearl. Fundamentals of Physics (edisi ke-6th). John Wiley & Sons, Inc.. ISBN 9971-51-330-7.
  2. ^ Tetty Yulliawati, SP & Denny Indra Sukry, SP, Intisari Pengetahuan Alam Lengkap (IPAL) - SMP
  3. ^ (en)Hayt, William Hart; Kemmerly, Jack; Durbin, Steven (2007) (dalam bahasa Inggris). Engineering Circuit Analysis (edisi ke-7th). McGraw-Hill Higher Education. hlm. 22-23. ISBN 978-0-07286611-7.
  4. ^ (en)Robert A. Millikan and E. S. Bishop (1917) (dalam bahasa Inggris). Elements of Electricity. American Technical Society. hlm. 54. http://books.google.com/books?id=dZM3AAAAMAAJ&pg=PA54&dq=%22Ohm%27s+law%22++current+directly+proportional&lr=&as_brr=3&as_pt=ALLTYPES&ei=V4wPStPrI4jSkwS4vN3UCQ.
  5. ^ (en) The Galvanic Circuit Investigated Mathematically (work by Ohm). Britannica Online Encyclopedia. Diakses pada 29 April 2010

GERAK JATUH BEBAS

Gerak jatuh bebas

Gerak jatuh bebas atau GJB adalah salah satu bentuk gerak lurus dalam satu dimensi yang hanya dipengaruhi oleh adanya gaya gravitasi. Variasi dari gerak ini adalah gerak jatuh dipercepat dan gerak peluru.

.Rumus umum

Secara umum gerak yang hanya dipengaruhi oleh gaya gravitasi memiliki bentuk:

y = y_0 + v_0 \cdot t + \frac12 g t^2 \!

di mana arti-arti lambang dan satuannya dalam SI adalah

  • t adalah waktu (s)
  • y adalah posisi pada saat t (m)
  • y0 adalah posisi awal (m)
  • v0 adalah kecepatan awal (m/s)
  • g adalah percepatan gravitasi (m/s2)

Akan tetapi khusus untuk GJB diperlukan syarat tambahan yaitu:

v_0 = 0 \!

sehingga rumusan di atas menjadi

y = y_0 + \frac12 g t^2 \!

.Analogi gerak jatuh bebas

Apabila gerak jatuh bebas adalah gerak yang hanya dipengaruhi oleh gaya gravitasi, dapat dikemukakan gerak jatuh yang mirip akan tetapi tidak hanya oleh gaya gravitasi, misalnya gerak oleh gaya listrik.

GJB dan analoginya

Gerak oleh gaya gravitasi Gerak oleh gaya listrik
Gaya F = mg \! F = qE \!
Percepatan a = g \! a = \frac q m E  \!
Kecepatan v = gt \! v = \left(\frac q m  E \right) t\!
Posisi y = \frac{1}{2} g  t^2 \! y = \frac{1}{2}  \left( \frac{q}{m} E \right) t^2 \!

Dengan memanfaatkan kedua gaya yang mirip ini percobaan Millikan dilakukan untuk mengukur muatan elektron dengan menggunakan setetes minyak.

Jangka Sorong

Jangka sorong adalah suatu alat ukur panjang yang dapat dipergunakan untuk mengukur panjang suatu benda dengan ketelitian hingga 0,1 mm. keuntungan penggunaan jangka sorong adalah dapat dipergunakan untuk mengukur diameter sebuah kelereng, diameter dalam sebuah tabung atau cincin, maupun kedalam sebuah tabung.

Pada gambar disamping ditunjukkan bagian-bagian dari jangka sorong. (sorot masing-masing bagian dari jangka sorong tersebut untuk mengetahui nama setiap bagian).

Secara umum, jangka sorong terdiri atas 2 bagian yaitu rahang tetap dan rahang geser. Jangka sorong juga terdiri atas 2 bagian yaitu skala utama yang terdapat pada rahang tetap dan skala nonius (vernier) yang terdapat pada rahang geser.

Sepuluh skala utama memiliki panjang 1 cm, dengan kata lain jarak 2 skala utama yang saling berdekatan adalah 0,1 cm. Sedangkan sepuluh skala nonius memiliki panjang 0,9 cm, dengan kata lain jarak 2 skala nonius yang saling berdekatan adalah 0,09 cm. Jadi beda satu skala utama dengan satu skala nonius adalah 0,1 cm – 0,09 cm = 0,01 cm atau 0,1 mm. Sehingga skala terkecil dari jangka sorong adalah 0,1 mm atau 0,01 cm.

Ketelitian dari jangka sorong adalah setengah dari skala terkecil. Jadi ketelitian jangka sorong adalah : Dx = ½ x 0,01 cm = 0,005 cm

Dengan ketelitian 0,005 cm, maka jangka sorong dapat dipergunakan untuk mengukur diameter sebuah kelereng atau cincin dengan lebih teliti (akurat).

Seperti yang sudah dijelaskan sebelumnya bahwa jangka sorong dapat dipergunakan untuk mengukur diameter luar sebuah kelereng, diameter dalam sebuah tabung atau cincin maupun untuk mengukur kedalaman sebuah tabung. Berikut akan dijelaskan langkah-langkah menggunakan jangka sorong untuk keperluan tersebut

1. Mengukur diameter luar

Untuk mengukur diameter luar sebuah benda (misalnya kelereng) dapat dilakukan dengan langkah sebagai berikut

* Geserlah rahang geser jangka sorong kekanan sehingga benda yang diukur dapat masuk diantara kedua rahang (antara rahang geser dan rahang tetap)
* Letakkan benda yang akan diukur diantara kedua rahang.
* Geserlah rahang geser kekiri sedemikian sehingga benda yang diukur terjepit oleh kedua rahang
* Catatlah hasil pengukuran anda

2. Mengukur diameter dalam

Untuk mengukur diameter dalam sebuah benda (misalnya diameter dalam sebuah cincin) dapat dilakukan dengan langkah sebagai berikut :

* Geserlah rahang geser jangka sorong sedikit kekanan.
* Letakkan benda/cincin yang akan diukur sedemikian sehingga kedua rahang jangka sorong masuk ke dalam benda/cincin tersebut
* Geserlah rahang geser kekanan sedemikian sehingga kedua rahang jangka sorong menyentuh kedua dinding dalam benda/cincin yang diukur
* Catatlah hasil pengukuran anda

3. Mengukur kedalaman

Untuk mengukur kedalaman sebuah benda/tabung dapat dilakukan dengan langkah sebagai berikut :

* Letakkan tabung yang akan diukur dalam posisi berdiri tegak.
* Putar jangka (posisi tegak) kemudian letakkan ujung jangka sorong ke permukaan tabung yang akan diukur dalamnya.
* Geserlah rahang geser kebawah sehingga ujung batang pada jangka sorong menyentuh dasar tabung.
* Catatlah hasil pengukuran anda.

Untuk membaca hasil pengukuran menggunakan jangka sorong dapat dilakukan dengan langkah sebagai berikut :

1. Bacalah skala utama yang berimpit atau skala terdekat tepat didepan titik nol skala nonis.
2. Bacalah skala nonius yang tepat berimpit dengan skala utama.
3. Hasil pengukuran dinyatakan dengan persamaan :

Hasil = Skala Utama + (skala nonius yang berimpit x skala terkecil jangka sorong) = Skala Utama + (skala nonius yang berimpit x 0,01 cm)

Karena Dx = 0,005 cm (tiga desimal), maka hasil pembacaan pengukuran (xo) harus juga dinyatakan dalam 3 desimal. Tidak seperti mistar, pada jangka sorong yang memiliki skala nonius, Anda tidak pernah menaksir angka terakhir (desimal ke-3) sehingga anda cukup berikan nilai 0 untuk desimal ke-3. sehingga hasil pengukuran menggunakan jangka sorong dapat anda laporkan sebagai :

Panjang L = xo ­+ Dx

Misalnya L = (4,990 + 0,005) cm

Jangka sorong biasanya digunakan untuk:

1. mengukur suatu benda dari sisi luar dengan cara diapit;

2. Mengukur sisi dalam suatu benda yang biasanya berupa lubang (pada pipa, maupun lainnya) dengan cara diulur;

3. Mengukur kedalamanan celah/lubang pada suatu benda dengan cara “menancapkan/menusukkan” bagian pengukur.

4. Jangka sorong memiliki dua macam skala: skala utama dan nonius.


Lihat contoh cara mengukur di bawah.


Lihatlah skala nonius yang berhimpit dengan skala utama. Di contoh, yang berhimpit adalah angka 4 (diberi tanda merah). Itu berarti 0.04 mm. Sekarang lihatlah ke skala utama di sebelah kiri angka nonius 0. Di situ menunjukkan angka 4,7 cm. Berarti hasil pengukurannya adalah 4,7 cm + 0.04 cm = 4,74 cm. Ingat lagi kan pelajaran SMA? Hehe. Untuk pembacaan ke inch prinsipnya sama, hanya saja harus pintar menggunakan skala yang berbeda

Gaya gesek

Gaya gesek (Ff) dari benda yang bergerak di atas suatu papan permukaan

Gaya gesek adalah gaya yang berarah melawan gerak benda atau arah kecenderungan benda akan bergerak. Gaya gesek muncul apabila dua buah benda bersentuhan. Benda-benda yang dimaksud di sini tidak harus berbentuk padat, melainkan dapat pula berbentuk cair, ataupun gas. Gaya gesek antara dua buah benda padat misalnya adalah gaya gesek statis dan kinetis, sedangkan gaya antara benda padat dan cairan serta gas adalah gaya Stokes.

Secara umum gaya gesek dapat dituliskan sebagai suatu ekspansi deret, yaitu

\vec{f} = - b_0 \frac{\vec{v}}{|\vec{v}|} - b_1  v \frac{\vec{v}}{|\vec{v}|} - b_2 v^2 \frac{\vec{v}}{|\vec{v}|} - ..,

di mana suku pertama adalah gaya gesek yang dikenal sebagai gaya gesek statis dan kinetis, sedangkan suku kedua dan ketiga adalah gaya gesek pada benda dalam fluida.

Gaya gesek dapat merugikan atau bermanfaat. Panas pada poros yang berputar, engsel pintu yang berderit, dan sepatu yang aus adalah contoh kerugian yang disebabkan oleh gaya gesek. Akan tetapi tanpa gaya gesek manusia tidak dapat berpindah tempat karena gerakan kakinya hanya akan menggelincir di atas lantai. Tanpa adanya gaya gesek antara ban mobil dengan jalan, mobil hanya akan slip dan tidak membuat mobil dapat bergerak. Tanpa adanya gaya gesek juga tidak dapat tercipta parasut.

.Asal gaya gesek

Gaya gesek merupakan akumulasi interaksi mikro antar kedua permukaan yang saling bersentuhan. Gaya-gaya yang bekerja antara lain adalah gaya elektrostatik pada masing-masing permukaan. Dulu diyakini bahwa permukaan yang halus akan menyebabkan gaya gesek (atau tepatnya koefisien gaya gesek) menjadi lebih kecil nilainya dibandingkan dengan permukaan yang kasar, akan tetapi dewasa ini tidak lagi demikian. Konstruksi mikro (nano tepatnya) pada permukaan benda dapat menyebabkan gesekan menjadi minimum, bahkan cairan tidak lagi dapat membasahinya (efek lotus).

[sunting] Jenis-jenis gaya gesek

Terdapat dua jenis gaya gesek antara dua buah benda yang padat saling bergerak lurus, yaitu gaya gesek statis dan gaya gesek kinetis, yang dibedakan antara titik-titik sentuh antara kedua permukaan yang tetap atau saling berganti (menggeser). Untuk benda yang dapat menggelinding, terdapat pula jenis gaya gesek lain yang disebut gaya gesek menggelinding (rolling friction). Untuk benda yang berputar tegak lurus pada permukaan atau ber-spin, terdapat pula gaya gesek spin (spin friction). Gaya gesek antara benda padat dan fluida disebut sebagai gaya Coriolis-Stokes atau gaya viskos (viscous force).

.Gaya gesek statis

Gaya gesek statis adalah gesekan antara dua benda padat yang tidak bergerak relatif satu sama lainnya. Seperti contoh, gesekan statis dapat mencegah benda meluncur ke bawah pada bidang miring. Koefisien gesek statis umumnya dinotasikan dengan μs, dan pada umumnya lebih besar dari koefisien gesek kinetis.

Gaya gesek statis dihasilkan dari sebuah gaya yang diaplikasikan tepat sebelum benda tersebut bergerak. Gaya gesekan maksimum antara dua permukaan sebelum gerakan terjadi adalah hasil dari koefisien gesek statis dikalikan dengan gaya normal f = μs Fn. Ketika tidak ada gerakan yang terjadi, gaya gesek dapat memiliki nilai dari nol hingga gaya gesek maksimum. Setiap gaya yang lebih kecil dari gaya gesek maksimum yang berusaha untuk menggerakkan salah satu benda akan dilawan oleh gaya gesekan yang setara dengan besar gaya tersebut namun berlawanan arah. Setiap gaya yang lebih besar dari gaya gesek maksimum akan menyebabkan gerakan terjadi. Setelah gerakan terjadi, gaya gesekan statis tidak lagi dapat digunakan untuk menggambarkan kinetika benda, sehingga digunakan gaya gesek kinetis.

.Gaya gesek kinetis

Gaya gesek kinetis (atau dinamis) terjadi ketika dua benda bergerak relatif satu sama lainnya dan saling bergesekan. Koefisien gesek kinetis umumnya dinotasikan dengan μk dan pada umumnya selalu lebih kecil dari gaya gesek statis untuk material yang sama.


ALAT-ALAT OPTIK

Mata manusia sebagai alat indra penglihatan dapat dipandang sebagai alat optik yang sangat penting bagi manusia.
Bagian-bagian mata menurut kegunaan fisis sebagai alat optik :
Kornea merupakan lapisan terluar yang keras untuk melindungi bagian-bagian lain dalam mata yang halus dan lunak.
Aqueous humor (cairan) yang terdapat di belakang kornea fungsi untuk membiaskan cahaya yang masuk ke dalam mata.
Lensa terbuat dari bahan bening (optis) yang elastik, merupakan lensa cembung berfungsi membentuk bayangan.Iris (otot berwarna) membentuk celah lingkaran yang disebut pupil.
Pupil berfungsi mengatur banyak cahaya yang masuk ke dalam mata. Lebar pupil diatur oleh iris, di tempat gelap pupil membuka lebar agar lebih banyak cahaya yang masuk ke dalam mata.
Retina (selaput jala) terdapat di permukaan belakang mata yang berfungi sebagai layar tempat terbentuknya bayangan benda yang dilihat. Bayangan yang jatuh pada retina bersifat : nyata, diperkecil dan terbalik.
Bintik buta merupakan bagian pada retina yang tidak peka terhadap cahaya, sehingga bayangan jika jatuh di bagian ini tidak jelas/kelihatan, sebaliknya pada retina terdapat bintik kuning.
Permukaan retina terdiri dari berjuta-juta sel sensitif, ada yang berbentuk sel batang berfungsi membedakan kesan hitam/putih dan yang berbentuk sel kerucut berfungsi membedakan kesan berwarna.Otot siliar (otot lensa mata) berfungsi mengatur daya akomodasi mata.
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke permukaan retina. Oleh sel-sel yang ada di dalam retina, rangsangan cahaya ini dikirimkan ke otak. Oleh otak diterjemahkan sehingga menjadi kesan melihat.

Daya Akomodasi Mata.

Perlu diketahui bahwa jarak antara lensa mata dan retina selalu tetap. Sehingga dalam melihat benda-benda pada jarak tertentu perlu mengubah kelengkungan lensa mata. Untuk mengubah kelengkungan lensa mata, yang berarti mengubah jarak titik fokus lensa merupakan tugas otot siliar. Hal ini dimaksudkan agar bayangan yang dibentuk oleh lensa mata selalu jatuh di retina. Pada saat mata melihat dekat lensa mata harus lebih cembung (otot-otot siliar menegang) dan pada saat melihat jauh lensa harus lebih pipih (otot-otot siliar mengendor). Peristiwa perubahan-perubahan ini disebut daya akomodasi.

Daya akomodasi (daya suai) adalah kemampuan otot siliar untuk menebalkan atau memipihkan kecembungan lensa mata yang disesuaikan dengan dekat atau jauhnya jarak benda yang dilihat.
Manusia memiliki dua batas daya akomodasi (jangkauan penglihatan) yaitu :
1. titik dekat mata (punctum proximum) adalah jarak benda terdekat di depan mata yang masih dapat dilihat dengan jelas. Untuk mata normal (emetropi) titik dekatnya berjarak 10cm s/d 20cm (untuk anak-anak) dan berjarak 20cm s/d 30cm (untuk dewasa). Titik dekat disebut juga jarak baca normal.
2. titik jauh mata (punctum remotum) adalah jarak benda terjauh di depan mata yang masih dapat dilihat dengan jelas. Untuk mata normal titik jauhnya adalah “tak terhingga”.

Cacat Mata
Berkurangnya daya akomodasi mata seseorang dapat menyebabkan berkurangnya kemampuan mata untuk melihat benda pada jarak tertentu dengan jelas. Cacat mata yang disebabkan berkurangnya daya akomodasi, antara lain rabun jauh, rabun dekat dan rabun dekat dan jauh. Selain tiga jenis itu, masih ada jenis cacat mata lain yang disebut astigmatisma.
Cacat mata dapat dibantu dengan kacamata. Kacamata hanya berfungsi membantu penderita cacat mata agar bayangan benda yang diamati tepat pada retina. Kacamata tidak dapat menyembuhkan cacat mata. Ukuran yang diberikan pada kacamata adalah kekuatan lensa yang digunakan. Kacamata berukuran -1,5, artinya kacamata itu berlensa negatif dengan kuat lensa -1,5 dioptri.Berkurangnya daya akomodasi mata dapat menyebabkan cacat mata sebagai berikut :


Rabun jauh (miopi)


Rabun jauh yaitu mata tidak dapat melihat benda-benda jauh dengan jelas, disebut juga mata perpenglihatan dekat (terang dekat/mata dekat). Penyebab terbiasa melihat sangat dekat sehingga lensa mata terbiasa tebal. Miopi sering dialami oleh tukang arloji, penjahit, orang yang suka baca buku (kutu buku) dan lain-lain.
Untuk mata normal (emetropi) melihat benda jauh dengan akomodasi yang sesuai, sehingga bayangan jatuh tepat pada retina.
Mata miopi melihat benda jauh bayangan jatuh di depan retina, karena lensa mata terbiasa tebal.
Mata miopi ditolong dengan kacamata berlensa cekung (negatif).

Tugas dari lensa cekung adalah membentuk bayangan benda di depan mata pada jarak titik jauh orang yang mempunyai cacat mata miopi. Karena bayangan jatuh di depan lensa cekung, maka harga si adalah negatif. Dari persamaan lensa tipis, 1/f=1/So+1/Si si adalah jarak titik jauh mata miopi. so adalah jarak benda ke mataf adalah fokus lensa kaca mata.

Rabun dekat (hipermetropi)

Rabun dekat tidak dapat melihat jelas benda dekat, disebut juga mata perpenglihatan jauh (terang jauh/mata jauh). Rabun dekat mempunyai titik dekat yang lebih jauh daripada jarak baca normal. Penyebab terbiasa melihat sangat jauh sehingga lensa mata terbiasa pipih.
Rabun dekat sering dialami oleh penerbang (pilot), pelaut, sopir dan lain-lain. Rabun jauh ditolong dengan kacamata berlensa cembung (positif).

Bayangan yang dibentuk lensa cembung harus berada pada titik dekat mata penderita rabun dekat. Karena bayangan yang dihasilkan lensa cembung berada di depan lensa maka harga si adalah negatif. Dari persamaan lensa tipis, 1/f=1/So+1/Si
si adalah jarak titik jauh mata hipermetropi. so adalah jarak benda ke mataf adalah fokus lensa kaca mata.

Mata tua (presbiopi)

Mata tua tidak dapat melihat dengan jelas benda-benda yang sangat jauh dan benda-benda pada jarak baca normal, disebabkan daya akomodasi telah berkurang akibat lanjut usia (tua). Pada mata tua titik dekat dan titik jauh keduanya telah bergeser. Mata tua diatasi atau ditolong dengan menggunakan kacamata berlensa rangkap (cembung dan cekung). Pada kacamata dengan lensa rangkap, lensa negatif bekerja seperti lensa pada kaca mata miopi, sedangkan lensa positif bekerja seperti halnya pada kacamata hipermetropi.

Astigmatisma (mata silindris)

Astigmatisma disebabkan karena kornea mata tidak berbentuk sferik (irisan bola), melainkan lebih melengkung pada satu bidang dari pada bidang lainnya. Akibatnya benda yang berupa titik difokuskan sebagai garis. Mata astigmatisma juga memfokuskan sinar-sinar pada bidang vertikal lebih pendek dari sinar-sinar pada bidang horisontal.Astigmatisma ditolong/dibantu dengan kacamata silindris.

Kamera

Kamera digunakan manusia untuk merekam kejadian penting atau kejadian yang menarik. Banyak jenis dan model kamera dapat kita jumpai dalam kehidupan sehari-hari. Kamera yang dipakai wartawan berbeda dengan yang dipakai fotografer. Kamera video dipakai dalam pengambilan gambar untuk siaran televisi atau pembuatan film. Kamera elektronik (autofokus) lebih mudah dipakai karena tanpa pengaturan lensa. Dewasa ini sudah ada kamera digital yang data gambarnya tidak perlu melalui proses pencetakan melainkan dapat dilihat atau diolah melalui komputer.
Bagian-bagian kamera mekanik (bukan otomatis) menurut kegunaan fisis :

* lensa cembung berfungsi untuk membentuk bayangan dari benda yang difoto
* diafragma berfungsi untuk membuat sebuah celah/lubang yang dapat diatur luasnya
* aperture yaitu lubang yang dibentuk diafragma untuk mengatur banyak cahaya
* shutter pembuka/penutup “dengan cepat” jalan cahaya yang menuju ke pelat film

* pelat film berfungsi sebagai layar penangkap/perekam bayangan.Setiap benda yang di foto, terletak pada jarak yang lebih besar dari dua kali jarak fokus di depan lensa kamera, sehingga bayangan yang jatuh pada pelat film memiliki sifat nyata, terbalik dan diperkecil. Untuk memperoleh bayangan yang tajam dari benda-benda pada jarak yang berbeda-beda, lensa cembung kamera dapat digeser ke depan atau ke belakang.

Lup (kaca pembesar)

Lup (kaca pembesar) dipakai untuk melihat benda-benda kecil agar tampak lebih besar dan jelas. Oleh tukang arloji, lup dipakai agar bagian jam yang diperbaikinya kelihatan lebih besar dan jelas. Oleh siswa saat praktikum biologi, lup dipakai untuk mengamati bagian hewan atau tumbuhan agar kelihatan besar dan jelas.

Sebagai alat optik, lup berupa lensa cembung tebal (berfokus pendek). Sifat bayangan yang diharapkan dari benda kecil yang dilihat dengan lup adalah tegak dan diperbesar. Orang yang melihat benda dengan menggunakan lup akan mempunyai sudut penglihatan (sudut anguler) yang lebih besar daripada orang yang melihat dengan mata biasa. Ada dua cara memakai lup, yaitu dengan mata tak berakomodasi dan mata berakomodasi.

Melihat dengan mata tak berakomodasi
Untuk melihat tanpa berakomodasi maka lup harus membentuk bayangan di jauh tak berhingga. Benda yang dilihat harus diletakkan tepat pada titik fokus lup. Perhatikan Gambar dibawah !

Keuntunganya adalah untuk pengamatan lama mata tidak cepat lelah, sedangkan kelemahannya dari segi perbesaran berkurang. Sifat bayangan yang dihasilkan maya, tegak dan diperbesar.
Perbesaran anguler yang didapatkan adalah :
M = PP/f
Keterangan :
M = perbesaran lup
PP= titik dekat mata
f = jarak titik fokus lensa

Melihat dengan mata berakomodasi
Agar mata dapat melihat dengan berakomodasi maksimum, maka bayangan yang dibentuk oleh lensa harus berada di titik dekat mata (PP). Benda yang dilihat harus terletak antara titik fokus dan titik pusat sumbu lensa.Perhatikan Gambar di bawah !

Kelemahannya untuk pengamatan lama mata cepat lelah, sedangkan keuntungannya dari segi perbesaran bertambah.
Sifat bayangan yang dihasilkan maya, tegak dan diperbesar.
Perbesaran anguler yang didapatkan adalah :
M = PP/f + 1
Keterangan :
M = perbesaran lup
PP= titik dekat mata
f = jarak titik fokus lensa

Mikroskop


Penggunaan lup untuk mengamati benda-benda kecil ada batasnya. Jika kita menggunakan lup yang berjarak fokus kecil untuk mendapatkan perbesaran yang lebih besar, bayangan yang diperoleh tidak sempurna. Untuk itu, diperlukan mikroskop. Dengan memakai mikroskop kita dapat mengamati benda atau hewan renik, seperti bakteri dan virus yang tidak dapat dilihat mata secara langsung ataupun dengan memakai lup. Jenis mikroskop mutakhir yang sudah dibuat manusia adalah mikroskup elektron. Dalam subbab ini akan dipelajari mikroskop cahaya yang proses kerjanya memanfaatkan lensa cembung dengan menerapkan pembiasan cahaya.

Mikroskop cahaya mempunyai bagian utama berupa dua lensa cembung. Lensa yang menghadap benda disebut lensa objektif dan yang dekat ke mata disebut lensa okuler. Jarak fokus lensa objektif lebih kecil dari jarak fokus lensa okuler. Selain itu, mikroskop dilengkapi dengan cermin cekung yang berfungsi untuk mengumpulkan cahaya pada objek preparat yang akan diamati. Untuk mengatur panjang mikroskop agar diperoleh bayangan dengan jelas digunakan makrometer dan mikrometer.

Dasar kerja mikroskop
Obyek atau benda yang diamati harus diletakkan di antara Fob dan 2Fob, sehingga lensa obyektif membentuk bayangan nyata, terbalik dan diperbesar. Bayangan yang dibentuk lensa obyektif merupakan benda bagi lensa okuler. Lensa okuler berperan seperti lup yang dapat diatur/digeser-geser sehingga mata dapat mengamati dengan cara berakomodasi atau tidak berakomodasi.

Pengamatan dengan akomodasi maksimum
Untuk pengamatan dengan akomodasi maksimum, maka bayangan yang dibentuk oleh lensa okuler harus jatuh pada titik dekat mata (PP). Perhatikan gambar !

Perbesaran yang diperoleh adalah merupakan perbesaran oleh lensa obyektif dan lensa okuler yaitu:
M = Moby x Mok
M = (Si/So) x (PP/f okuler + 1)

Pengamatan dengan mata tidak berakomodasi
Untuk pengamatan dengan mata tidak berakomodasi, maka bayangan yang dibentuk oleh lensa okuler harus berada pada titik jauh mata. Perhatikan gambar !

Perbesaran yang diperoleh adalah merupakan perbesaran oleh lensa obyektif dan lensa okuler yaitu:
M = Moby x Mok
M = (Si/So) x (PP/f okuler)

Panjang Mikroskop
Panjang mikroskop adalah jarak lensa obyektif terhadap lensa okuler dirumuskan :
Untuk mata berakomodasi
d = Si (ob) + So (ok)
Keterangan :
d = panjang mikroskop
Si (ob) = jarak bayangan lensa obyektif
So (ok) = jarak benda lensa okuler

Untuk mata tidak berakomodasi
d = Si (ob) + f (ok)
Keterangan :
d = panjang mikroskop
Si (ob) = jarak bayangan lensa obyektif
f (ok) = jarak fokus lensa okuler

Teropong (Teleskop)

A. Teropong bintang

Teropong bintang disebut juga teropong astronomi.

- terdiri dari 2 buah lensa cembung.

- jarak fokus lensa obyektif lebih besar dari jarak fokus lensa okuler.

Dasar Kerja Teropong

Obyek benda yang diamati berada di tempat yang jauh tak terhingga, berkas cahaya datang berupa sinar-sinar yang sejajar. Lensa obyektif berupa lensa cembung membentuk bayangan yang bersifat nyata, diperkecil dan terbalik berada pada titik fokus.

Bayangan yang dibentuk lensa obyektif menjadi benda bagi lensa okuler yang jatuh tepat pada titik fokus lensa okuler.

Penggunaan dengan mata tidak berkomodasi

Untuk penggunaan dengan mata tidak berkomodasi, bayangan yang dihasilkan oleh lensa obyektif jatuh di titik fokus lensa okuler.

Perbesaran anguler yang diperoleh adalah :

M = f (ob) / f (ok)

Panjang teropong adalah :

M = f (ob) + f (ok)

Penggunaan dengan mata berkomodasi maksimal

Untuk penggunaan dengan mata berkomodasi maksimal bayangan yang dihasilkan oleh lensa obyektif jatuh diantara titik pusat bidang lensa dan titik fokus lensa okuler.

Perbesaran anguler dapat diturunkan sama dengan penalaran pada pengamatan tanpa berakomodasi dan didapatkan :

M = f (ob) / So (ok)

Panjang teropong adalah :

M = f (ob) + So (ok)
B. Teropong Bumi

Teropong bumi disebut juga teropong medan.
Terdiri dari 3 buah lensa cembung yaitu lensa obyektif, lensa okuler dan lensa pembalik.

Dasar Kerja Teropong Bumi :
Lensa obyektif membentuk bayangan bersifat nyata, terbalik dan diperkecil yang jatuh pada fob.
Bayangan dibentuk oleh lensa obyektif menjadi benda bagi lensa pembalik jatuh pada jarak 2f pembalik sehingga terbentuk bayangan pada jarak 2f pembalik juga yang bersifat nyata, terbalik, dan sama besar .

Dengan adanya lensa pembalik panjang teropong dirumuskan menjadi :

d = f (ob) + 4f (pembalik) + f (ok)

Lensa pembalik berfungsi untuk membalikkan arah cahaya sebelum melewati lensa okuler, lensa okuler berfungsi seperti lup membentuk bayangan bersifat maya, tegak, dan diperbesar.
Adanya lensa pembalik tidak mempengaruhi perbesaran akhir, bayangan akhir bersifat maya, tegak dan diperbesar dengan perbesaran :
M = d = f (ob) / f (ok)

C. Teropong prisma (binokuler)

Teropong prisma terdiri atas dua pasang lensa cembung (sebagai lensa objektif dan lensa okuler) dan dua pasang prisma kaca siku-siku samakaki. Sepasang prisma yang diletakkan berhadapan, berfungsi untuk membelokkan arah cahaya dan membalikkan bayangan.
Bayangan yang dibentuk lensa objektif bersifat nyata, diperkecil, dan terbalik. Bayangan nyata dari lensa objektif menjadi benda bagi lensa okuler. Sebelum dilihat dengan lensa okuler, bayangan ini dibalikkan oleh sepasang prisma siku-siku sehingga bayangan akhir dilihat maya, tegak, dan diperbesar. Perbesaran bayangan yang diperoleh dengan memakai teropong prisma sama dengan teropong bumi.Beberapa keuntungan praktis dari teropong prisma dibandingkan teropong yang lain :
1. Menghasilkan bayangan yang terang, karena berkas cahaya dipantulkan sempurna oleh bidang-bidang prisma.

2. Dapat dibuat pendek sekali, karena sinarnya bolak-balik 3 kali melalui jarak yang sama (dipantulkan 4 kali oleh dua prisma).
3. Daya stereoskopis diperbesar, dua mata melihat secara bersamaan
4. Dengan adanya prisma arah cahaya telah dibalikkan sehingg terlihat bayangan akhir bersifat maya, diperbesar dan tegak.

D. Teropong pantul astronomi .

Teropong pantul terdiri dari sebuah cermin cekung berjarak fokus besar sebagai cermin objektif, sebuah lensa cembung sebgai lensa okuler dan sebuah cermin datar sebagai pembelok arah cahaya dari cermin objektif ke lensa okuler.

E. Teropong panggung
Teropong panggung terdiri dari dua lensa, yaitu :
- lensa obyektif berup lensa cembung
- lensa okuler berupa lensa cekung

Dasar kerja dari teropong panggung
Sinar-sinar sejajar yang masuk ke lensa obyektif membentuk bayangan tepat di titik fokus lensa obyektif. Bayangan ini akan berfungsi sebagai benda maya bagi lensa okuler. Oleh lensa okuler dibentuk bayangan yang dapat dilihat oleh mata. Perlu diketahui bahwa bayangan yang dibentuk lensa okuler adalah tegak.
Perhatikan diagram dari proses terbentuknya bayangan benda pada gambar berikut.

Dari gambar diatas untuk pengamatan tanpa berakomodasi), maka panjang teropong adalah :
d = f (ob) - f (ok)

Perbesaran anguler yang didapatkan adalah sama dengan perbesaran pada teropong bintang ataupun juga teropong bumi.
M = f (ob) / f (ok)

GERAK MELINGKAR

Setelah mempelajari materi pembelajaran ini, diharapkan anda dapat :

  • mendefinisikan besaran-besaran fisika dalam gerak melingkar.
  • memformulasikan hubungan antara besaran fisika dalam gerak melingkar dan gerak lurus.

Dalam bagian percepatan kita telah melihat bahwa percepatan timbul dari perubahan kecepatan. Pada contoh gerak jatuh bebas, perubahan kecepatan yang terjadi hanya menyangkut besarnya saja, sedangkan arahnya tidak. Untuk partikel yang bergerak melingkar dengan laju konstan, arah vektor kecepatan berubah terus menerus, tetapi besarnya tidak. Gerak ini disebut gerak melingkar beraturan (GMB)

Dalam gerak lurus anda mengenal besaran perpindahan (linear) dan kecepatan (linear), keduanya termasuk besaran vektor. Dalam gerak melingkar anda akan mengenal juga besaran yang mirip dengan itu, yaitu perpindahan sudut dan kecepatan sudut, keduanya juga termasuk besaran vektor.

Besaran fisis pada GMB

a. Besaran Sudut (Ø)

Besar sudut Ø dinyatakan dalam derajat tetapi pada gerak melingkar beraturan ini dinyatakan dalam radian. Satu radian (rad) adalah sudut dimana panjang busur lingkaran sama dengan jari-jari lingkaran tersebut (r). Jika s = r, Ø bernilai 1 rad.

Secara umum besaran sudut Ø dituliskan :

Ø = s / r

dimana s = 2∏ r , sehingga Ø = 2∏ rad

b. Kecepatan dan kelajuan Sudut (ω)

Pada gerak melingkar, besaran yang menyatakan seberapa jauh benda berpindah (s) dalam selang waktu tertentu (t) disebut kecepatan anguler atau kecepatan sudut (ω). Kecepatan sudut ini terbagi atas kecepatan sudut rata-rata dan kecepatan sudut sesaat.

Kecepatan sudut rata-rata dituliskan sebagai : ω = ΔØ / Δt

Kecepatan sudut sesaat dinyatakan sebagai ω = lim ΔØ / Δt

Satuan kecepatan sudut adalah rad/s. Selain satuan ini, satuan kecepatan sudut dapat pula ditulis dalam rpm (rotation per minutes) dimana 1 rpm = 2Π rad/menit = Π/30 rad/s.

Sedangkan nilai atau besarnya kecepatan sudut disebut kelajuan sudut.

c. Periode (T)

Waktu yang dibutuhkan oleh suatu benda untuk bergerak satu putaran disebut periode (T). Waktu yang dibutuhkan untuk menempuh satu putaran dinyatakan oleh :

T = perpindahan sudut / kecepatan sudut

T = 2Π / ω dimana 2Π = perpindahan sudut (anguler) untuk satu putaran.

Jika jumlah putaran benda dalam satu sekon dinyatakan sebagai frekuensi (f) maka diperoleh hubungan :

T = 1 / f dimana f = frekuensi dengan satuan 1/s atau Hertz (Hz).

d. Kecepatan dan kelajuan linear (v)

Kecepatan linear didefinisikan sebagai hasil bagi panjang lintasan linear yang ditempuh dengan selang waktu tempuhnya. Panjang lintasan dalam gerak melingkar yaitu keliling lingkaran 2Π.r

Jika selang waktu yang diperlukan untuk menempuh satu putaran adalah 1 periode (T), maka :

Kecepatan linear dirumuskan : v = 2Π.r / T atau v = ω.r

Kecepatan linear ( v) memiliki satuan m/s, r = jari-jari lintasan, dengan satuan meter dan ω = kecepatan sudut dalam satuan rad/s

e. Percepatan Sentripetal

Pada saat anda mempelajari gerak lurus beraturan sudah mengetahui bahwa percepatan benda sama dengan nol. Benarkah kalau kita juga mengatakan percepatan benda dalam gerak melingkar beraturan sama dengan nol? Dari gambar di atas diketahui bahwa arah kecepatan linear pada gerak melingkar beraturan selalu menyinggung lingkaran. Karena itu, kecepatan linear disebut juga kecepatan tangensial.

Sekarang kita akan mempelajari apakah vektor percepatan pada benda yang bergerak melingkar beraturan nol atau tidak.Dari gambar di atas tampak bahwa vektor kecepatan linear memiliki besar sama tetapi arah berbeda-beda. Oleh karena itu kecepatan linear selalu berubah sehingga harus ada percepatan. Dari gambar di atas tampak bahwa arah percepatan selalu mengarah ke pusat lingkaran dan selalu tegak lurus dengan kecepatan linearnya. Percepatan yang selalu tegak lurus terhadap kecepatan linearnya dan mengarah ke pusat lingkaran ini disebut percepatan sentripetal.

Percepatan sentripetal pada gerak melingkar beraturan dirumuskan :

Contoh Soal :

Sebuah roda dengan jari-jari 20 cm, berputar pada sumbunya dengan kelajuan 6.000/Π rpm. Tentukan: (a). kelajuan sudut, frekuensi, dan periodenya, (b). kelajuan linear sebuah titik atau dop pada roda dan panjang lintasan titik yang ditempuh selama 10 s. (c) jumlah putaran dalam 10 s.

Pembahasan :

1. diketahui : r = 20 cm = 0,2 m ; ω = 6.000/Π rpm = 100/Π rps = 200 rad/s

dijawab :

(a). Frekuensi f = ω / 2Π = (200 rad/s)/2Π = 100/Π Hz

(b). Kelajuan linear pada titik luar

v = ω . r = (200 rad/s). (0,2 m) = 40 m/s

(c) Jumlah putaran selama 10 s. Sudut yang ditempuh selama 10 s adalah Ø = ω . t = 2.000 rad

1 putaran = 2Π rad sehingga jumlah putaran (n) adalah n = 2.000 rad/2Π =(1000/Π ) putaran.

2. Sebuah benda bergerak melingkar beraturan dengan jari-jari lintasan 70 cm. Dalam waktu 20 s, benda tersebut melakukan putaran sebanyak 40 kali. (a). tentukan periode dan frekuensi putaran. (b) berapa laju linear benda tersebut? (c). hibunglah kecepatan sudut benda tersebut.

Pembahasan :

diketahui : r = 70 cm = 0,7 m; t = 20 s ; n = 40

dijawab :

(a). Waktu untuk menempuh satu putaran (T) = waktu tempuh/jumlah putaran

T = 20 s / 40 = 0,5 s. Jadi frekuensinya (f) = 1/T = 2 Hz

(b). Laju linear benda (v) = ω . r = 2Πf.r = 2(3,14) 2 Hz.0,7 m = 8,8 m/s

(c). Kecepatan sudut benda (ω) = v / r = (8,8 m/s) / 0,7 m = 12,6 rad/s

Pengertian Cermin dan Sifat Bayangan

1. Cermin Datar
Permukaan cermin datar sangat halus dan memiliki permukaan yang datar pada bagian pemantulannya, biasanya terbuat dari kaca. Di belakang kaca dilapisi logam tipis mengilap sehingga tidak tembus cahaya.

Pembentukan Bayangan pada Cermin Datar
Ketika kita bercermin, bayangan kita tidak pernah dapat dipegang atau ditangkap dengan layar. Bayangan seperti itu disebut bayangan maya atau bayangan semu.
Bayangan maya selalu terletak di belakang cermin. Bayangan ini terbentuk karena sinar-sinar pantul yang teratur pada cermin.

Sifat-sifat bayangan yang dibentuk oleh cermin datar adalah sebagai berikut:
a. Bayangannya maya.
b. Bayangannya sama tegak dengan bendanya.
c. Bayangannya sama besar dengan bendanya.
d. Bayangannya sama tinggi dengan bendanya.

2. Cermin Cekung
Cermin cekung memiliki permukaan pemantul yang bentuknya melengkung atau membentuk cekungan. Garis normal pada cermin cekung adalah garis yang melalui pusat kelengkungan, yaitu di titik M atau 2F. Sinar yang melalui titik ini akan dipantulkan ke titik itu juga.

Cermin cekung bersifat mengumpulkan sinar pantul atau konvergen. Ketika sinar-sinar sejajar dikenakan pada cermin cekung, sinar pantulnya akan berpotongan pada satu titik. Titik perpotongan tersebut dinamakan titik api atau titik fokus (F).

Ketika sinar-sinar datang yang melalui titik fokus mengenai permukaan cermin cekung, ternyata semua sinar tersebut akan dipantulkan sejajar dengan sumbu utama. Akan tetapi, jika sinar datang dilewatkan melalui titik M (2F), sinar pantulnya akan dipantulkan ke titik itu juga.

Sinar Istimewa pada Cermin Cekung adalah sebagai berikut:
a. Sinar datang sejajar dengan sumbu utama akan dipantulkan melalui titik fokus.
b. Sinar datang melalui titik fokus akan dipantulkan sejajar sumbu utama.
c. Sinar datang melalui titik pusat kelengkungan cermin akan dipantulkan ke titik itu juga.

Pembentukan Bayangan pada Cermin Cekung
Jika kita bercermin pada cermin cekung, kita tidak akan mendapatkan bayanganmu selalu di belakang cermin.

Ketika kita meletakkan sebuah benda dengan jarak lebih besar daripada titik fokus cermin cekung, bayangan benda yang terjadi selalu nyata karena merupakan perpotongan langsung sinar-sinar pantulnya (di depan cermin cekung). Akan tetapi, ketika benda kita letakkan pada jarak di antara titik fokus dan cermin, kita tidak akan mendapatkan bayangan di depan cermin. Bayangan benda akan kelihatan di belakang cermin cekung, diperbesar, dan tegak.

3. Cermin Cembung
Pada cermin cembung, bagian mukanya berbentuk seperti kulit bola, tetapi bagian muka cermin cembung melengkung ke luar. Titik fokus cermin cembung berada di belakang cermin sehingga bersifat maya dan bernilai negatif.

Cermin cembung memiliki sifat menyebarkan sinar (divergen). Jika sinar-sinar pantul pada cermin cembung kamu perpanjang pangkalnya, sinar akan berpotongan di titik fokus (titik api) di belakang cermin. Pada perhitungan, titik api cermin cembung bernilai negatif karena bersifat semu.

Sinar-sinar pantul pada cermin cembung seolah-olah berasal dari titik fokus menyebar ke luar. Seperti halnya pada cermin cekung.
Pada cermin cembung pun berlaku sinarsinar istimewa:
a. Sinar datang sejajar dengan sumbu utama akan dipantulkan seolah-olah dari titik fokus.
b. Sinar datang menuju titik fokus akan dipantulkan sejajar sumbu utama.
c. Sinar datang menuju titik M (2F) akan dipantulkan seolah-olah dari titik itu juga.

Pembentukan Bayangan pada Cermin Cembung
Bayangan yang terbentuk pada cermin cembung selalu maya dan berada di belakang cermin. Mengapa demikian? Secara grafis, kita cukup menggunakan dua berkas sinar istimewa untuk mendapatkan bayangan pada cermin cembung.